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Abstract

In this paper, a ®nite element formulation based on the classical laminated plate theory is presented for the shape and

vibration control of the functionally graded material (FGM) plates with integrated piezoelectric sensors and actuators.

The properties of the FGM plates are functionally graded in the thickness direction according to a volume fraction

power law distribution. A constant velocity feedback control algorithm is used for the active control of the dynamic

response of the FGM plate through closed loop control. The static and dynamic responses are presented in both tabular

and graphical forms for an FGM plate of aluminum oxide/Ti±6A1±4V material composition. The e�ects of the con-

stituent volume fractions and the in¯uence of feedback control gain on the static and dynamic responses of FGM plates

are examined. Ó 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The use of piezoelectric sensor and actuator systems for the active vibration suppression and shape
control is fast becoming an essential tool in the design of smart structures and systems. The piezoelectric
sensor is able to respond to the vibrations and generate a voltage due to the direct piezoelectric e�ect. This
voltage is processed and ampli®ed by a feedback gain and then applied onto an actuator. The actuator in
turn produces a control force due to the converse piezoelectric e�ect. If the control force is appropriate, the
vibration of the structure may be suppressed adequately.

Thus far, studies on the analysis of smart structures with surface or embedded piezoelectric sensors and
actuators have focused mainly on the analytical techniques of Plump et al. (1987), Crawley and de Luis
(1987), Lee et al. (1991) and Lam and Ng (1999). The major drawback of using an analytical approach is
that it can only be used for a limited variety of simple structures such as beams or simply supported plates.
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For more complicated structures with integrated piezoelectric materials, ®nite element analysis may be
required. Early investigations into the ®nite element formulation for piezoelectric solids were conducted by
Allik and Hughes (1970). The interaction between electricity and elasticity were analyzed using tetrahedral
elements. However, these elements were too thick for thin shell or plate applications. To overcome this
drawback, Tzou and Tseng (1990) proposed a ``thin'' piezoelectric solid element by adding three internal
degrees of freedom for the vibration control of structures with piezoelectric materials. Hwang et al. (1993)
employed classical laminated plate theory (CLPT) to analyze the vibration control of a laminated plate with
piezoelectric sensors and actuators. Their study explored the optimal design of the piezoelectric sensors and
actuators. Based on the ®rst-order shear deformation theory, Chandrashekhare and Tenneti (1995) de-
veloped a ®nite element model for the vibration control of laminated plates with piezoelectric sensors and
actuators and analyzed the thermally induced vibration suppression of laminated plates. Robbins and
Reddy (1991) presented the ®nite element model of a piezoelectrically actuated beam by using four di�erent
displacement-based one-dimensional beam theories all of which can be reduced from the generalized
laminated plate theory of Reddy (1987). The static and dynamic interactions between a bonded piezo-
electric actuator and an underlying beam substructure were investigated in this work. A number of ap-
proaches have been introduced to model the laminated shells containing piezoelectric layers. Based on the
shear elastic shell theory of the Reissner±Mindlin type, Lammering (1991) developed a ®nite element model
for the vibration control of a shell structure with piezoelectric layers. By using the direct method of
Lyapunov, a control law is derived for the vibration control and asymptotic stability. Further, Heyliger
et al. (1996) constructed a ®nite element model for laminated piezoelectric shells using a discrete-layer
theory that allows for the discontinuous shear strain through the shell thickness. The active and sensory
response of a cylindrical ring was studied.

Additionally, a relatively new class of composite materials known as ``functionally graded materials''
(FGMs) ®rst developed by the Japanese in the late 1980s is characterized by the smooth and continuous
change of the mechanical properties from one surface to the other, Yamanouchi et al. (1990). Due to its
superior thermo-mechanical properties, FGMs have found extensive applications in various industries.
Substantial research work have been done on the FGMs, Williamson et al. (1993), Obata and Noda (1996),
and Praveen and Reddy (1998). However, to the authorsÕ knowledge, minimal or no work has been pre-
sented in the literature for the active control of FGM structures using piezoelectric materials.

In this study, a ®nite element model based on CLPT is presented for the shape and vibration control
analysis of the FGM plates with piezoelectric sensors and actuators. The constant velocity feedback control
algorithm is used in a closed control loop. The shape control and vibration suppression of the FGM plates
is performed to show the e�ectiveness of the presently developed ®nite element model with piezoelectric
integration. The in¯uence of the constituent volume fractions of Ti±6A1±4V is also studied for the static
de¯ection, natural frequency and dynamic response of the FGM plates.

2. Analytical model

Consider an FGM plate with the integrated sensors and actuators as shown in Fig. 1. The top layer of
the laminated plate is the piezoelectric actuator layer and the bottom layer is the piezoelectric sensing layer.
The intermediate layer is an FGM plate that is made of the combined aluminum oxide and Ti±6A1±4V
materials, and its properties are graded through the thickness direction according to a volume fraction
power law distribution. Functionally gradient materials are mainly used in high temperature environments,
and the constituent materials possess temperature-dependent properties. The material properties can be
expressed as follows (Touloukian, 1967):

P � P0�Pÿ1Tÿ1 � 1� P1T � P2T 2 � P3T 3�; �1�
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where P0, Pÿ1, P1, P2 and P3 are the coe�cients of temperature T. Since the FGM considered here is a
mixture of two materials, the e�ective properties which are both temperature and position dependent, can
be expressed as

Peff�T ; z� � PT �T �VT �z� � PA�T ��1ÿ VT �z��; �2�
where Peff is the e�ective material property of the functionally gradient material, and PT and PA are the
temperature dependent properties of the Ti±6A1±4V and aluminum oxide, respectively. VT is the volume
fraction of the Ti±6A1±4V constituent of the FGM and can be written as

VT � 2z� h
2h

� �n

; �3�

where n is the volume fraction exponent �06 n61�.

3. Theoretical formulation using classical laminated plate theory

3.1. Displacements and strains

The formulation presented here is based on the classical laminated plate theory (CLPT), which leads to
the following displacement ®eld:

fug �
u1

u2

u3

8<:
9=; � u0

v0

w0

8<:
9=;ÿ z ow0

ox

z ow0

oy
0

8<:
9=; � �H �f�ug; �4�

where f�ug � fu0; v0;w0; ow0=ox; ow0=oygT
are the midplane displacements in the x, y and z directions, and

the rotations of the yz and xz planes due to bending, and

�H � �
1 0 0 ÿz 0
0 1 0 0 ÿz
0 0 1 0 0

24 35: �5�

Fig. 1. Schematic diagram showing the feedback con®guration of the FGM plate with piezoelectric sensor/actuator layers.
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The strains associated with the displacement ®eld in Eq. (4) are given by

e1

e2

e6

8<:
9=; �

ou0

ox
ov0

oy
ou0

oy � ov0

ox

8><>:
9>=>;ÿ z

o2w0

ox2

o2w0

oy2

2 o2w0

oxoy

8>><>>:
9>>=>>;: �6�

3.2. Constitutive relationships

Quasi-static and plane stress formulations are assumed in the present analysis. Thus, the constitutive
relationship for the FGM lamina in the principal material coordinates of the lamina, taking into account
the piezoelectric e�ects, is given as follows:

r1

r2

r6

8<:
9=; � c11 c12 0

c12 c22 0
0 0 c66

24 35 e1

e2

e6

8<:
9=;ÿ 0 0 e31

0 0 e32

0 0 0

24 35 E1

E2

E3

8<:
9=;; �7�

D1

D2

D3

8<:
9=; � 0 0 0

0 0 0
e31 e32 0

24 35 e1

e2

e6

8<:
9=;� k11 0 0

0 k22 0
0 0 k33

24 35 E1

E2

E3

8<:
9=;: �8�

Here Ei � ÿU;i and U is the electric potential, frg, feg, fEg and fDg are the stress, strain, electric ®eld and
the electric displacements respectively. �c�, �e� and �k� are accordingly the elastic constants, the piezoelectric
stress constants and the dielectric permittivity coe�cients for a constant elastic strain. For an FGM plate of
uniform thickness, the relevant functionally properties of the plate are assumed to vary through the
thickness of the plate. The variation of the elastic constants is assumed to be in terms of a simple power law
distribution given as

cij�z� � cT
ij

�
ÿ cA

ij

�
2z� h

2h

0@ 1An

� cA
ij ; �9�

where cT
ij and cA

ij are the corresponding elastic properties of the Ti±6A1±4V and aluminum oxide, n is the
volume fraction exponent, and h is the thickness of the plate. The piezoelectric stress constants can be
obtained by using the piezoelectric strain and elastic constants as follows:

0 0 0
0 0 0

e31 e32 0

24 35 � 0 0 0
0 0 0

d31 d32 0

24 35 c11 c12 0
c12 c22 0
0 0 c66

24 35: �10�

3.3. Variational form of the equations of motion

The potential energy H stored in a lamina comprises the various components of the elastic strain energy,
the piezoelectric energy and the electrical energy, and is given by (Tiersten, 1969).

H eij;Ei

ÿ � � 1
2
cijkleijekl ÿ eijkEiejk ÿ 1

2
kijEiEj: �11�

Thus, the variational form of the equations of motion for the plate can be written, using HamiltonÕs
principle, as

1644 X.Q. He et al. / International Journal of Solids and Structures 38 (2001) 1641±1655



d
Z t1

t0

Z
v

1

2
q _ui _ui

�
ÿ H eij;Ei

ÿ ��
dvdt �

Z t1

t0

Z
v

fbi dui dvdt �
Z t1

t0

fci dui dt

�
Z t1

t0

Z
s

fsi dui� � qd/�dsdt � 0

�12�

or Z t1

t0

Z
v
�ÿq�ui dui ÿ rij deij � Di dEi�dvdt �

Z t1

t0

Z
v

fbi dui dv dt �
Z t1

t0

fci dui dt

�
Z t1

t0

Z
s

�fsi dui � qd/�dsdt � 0:

�13�

Here, t0 and t1 describe two arbitrary time values, d is the variational operator, v and s denote the volume
and surface of the solid respectively. The symbol q is the surface charge, fbi, fci and fsi represent the body
force, concentrated load and speci®ed traction respectively. The symbol q is the density of the plate which
varies according to the relationship,

q z� � � qT� ÿ qA�
2z� h

2h

� �n

� qA; �14�

where qT and qA are the densities of Ti±6A1±4V and aluminum oxide, respectively, and

Di � ÿ oH
oEi
� eijkejk � kijEj; �15�

rij � oH
oeij
� cijklekl ÿ ekijEk: �16�

4. Finite element model

The displacements and electric potential can be de®ned in terms of nodal variables as follows:

uf g � H� � Nu� � uef g; �17�

/f g � N/

� �
/ef g; �18�

where fueg and f/eg are the generalized nodal displacements and the nodal electric potentials respectively.
�Nu� and �N/� are the shape function matrices and

Nu� � � Nu1� � Nu2� � Nu3� � Nu4� �� � �19�
and

Nui� � �

wi 0 0 0 0
0 wi 0 0 0
0 0 gi1 gi2 gi3

0 0 ogi1
ox

ogi2
ox

ogi3
ox

0 0 ogi1
oy

ogi2
oy

ogi3
oy

2666664

3777775 i � 1; 2; 3; 4: �20�

Here, wi are the linear interpolation functions and gij are the non-conforming Hermite cubic interpolation
functions (Reddy, 1997).
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The in®nitesimal engineering strains associated with the displacements are given by

ef g � Bu� � uef g; �21�
where

Bu� � � Bu1� � Bu2� � Bu3� � Bu4� �� � � Au� � ÿ z Cu� � �22�
and

Bui� � � Aui� � ÿ z Cui� � i � 1; 2; 3; 4; �23�

Aui� � �
owi
ox 0 0 0 0

0 owi
oy 0 0 0

owi
oy

owi
ox 0 0 0

264
375; �24�

Cui� � �
0 0 o2gi1

ox2
o2gi2
ox2

o2gi3
ox2

0 0 o2gi1
oy2

o2gi2
oy2

o2gi3
oy2

0 0 2 o2gi1
ox oy 2 o2gi2

ox oy 2 o2gi3
ox oy

2664
3775: �25�

The electric ®eld vector Ef g is de®ned in terms of nodal variables as

Ef g � ÿr/ � ÿ B/

� �
/ef g; �26�

where

B/

� � � r N/

� �
: �27�

Substituting Eqs. (15)±(17), (21) and (26) into Eq. (13) and assembling the element equations yields

Muu� �f�ug � Kuu� � uf g � Ku/

� �
/f g � Fmf g; �28�

K/u

� �
uf g ÿ K//

� �
/f g � Fq

� 	
: �29�

The matrices and vectors are given by

Muu� � �
X
elem

XNL

K�1

Z 1

ÿ1

Z 1

ÿ1

Nu� �T I� � Nu� �jJ jdndg; �30�

Kuu� � �
Z

v
Bu� �T C� � Bu

h i
dv

�
X
elem

XNL

K�1

Z 1

ÿ1

Z 1

ÿ1

Au� �T A� � Au� �
�

ÿ Au� �T B� � Cu� � ÿ Cu� �T B� � Au� � � Cu� �T Q� � Cu

� ��jJ jdndg; �31�

Ku/

� � � Z
v

Bu� �T e
� �T

B/

� �
dv

�
X
elem

XNL

K�1

zK�1

�
ÿ zK

�Z 1

ÿ1

Z 1

ÿ1

Au� �T e
� �T

B/

� ��
ÿ 1

2
zK�1� � zK� Cu� �T e

� �T
B/

� ��jJ jdndg; �32�
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K/u

� � � Z
v

B/

� �T
e� � Bu� �dv

�
X
elem

XNL

K�1

zK�1

�
ÿ zK

�Z 1

ÿ1

Z 1

ÿ1

B/

� �T
e� � Au� �

�
ÿ 1

2
zK�1

ÿ � zK

�
B/

� �T
e� � Cu

� ��jJ jdndg; �33�

K//

� � � Z
v

B/

� �T
k� � B/

� �
dv �

X
elem

XNL

K�1

zK�1� ÿ zK�
Z 1

ÿ1

Z 1

ÿ1

B/

� �T
k� � B/

� �jJ jdndg; �34�

Fmf g �
Z

v
N� �T H� �T fbf gdv�

Z
sf

N� �T H� �T fsf gds� N� �T H� �T fcf g; �35�

F e
q

n o
�
Z

sq

N/

� �T
qf gds; �36�

where

I� � �
Z zK�1

zK

qT�
�

ÿ qA�
2z� h

2h

� �n

H� �T H� � � qT H� �T H� �
�

dz; �37�

A;B;Q� � �
Z zK�1

zK

C� �T
��

ÿ C� �A
� 2z� h

2h

� �n

1; z; z2
ÿ �� C� �A 1; z; z2

ÿ ��
dz: �38�

Substituting Eq. (29) into Eq. (28), we obtain

Muu� �f�ug � Kuu� �
�

� Ku/

� �
K//

� �ÿ1
K/u

� ��
uf g � Fmf g � Ku/

� �
K//

� �ÿ1
Fq

� 	
: �39�

For the sensor layer, the applied charge Fq

� 	
is zero and the converse piezoelectric e�ect is assumed

negligible. Using Eq. (29), the sensor output is

/f gs � K//

� �ÿ1

s
K/u

� �
s

uf gs; �40�
and the sensor charge due to deformation from Eq. (29) is

Fq

� 	
s
� K/u

� �
s

uf gs; �41�
where the subscript s denotes the sensors. The control law on /f ga is implemented as

/f ga � Gf _/gs; �42�
where G is the feedback gain and subscript a denotes the actuators. Substituting Eqs. (42) and (40) into Eq.
(29) yields

Fq

� 	
a
� K/u

� �
a

uf ga ÿ G K//

� �
a

K//

� �ÿ1

s
K/u

� �
s
f _ugs: �43�

Substituting Eqs. (41) and (43) into Eq. (39) and rearranging

Muu� �f�ug � Cd� �f _ug � Kuu� � uf g � Fmf g; �44�
where Cd� � is the active damping matrix

Cd� � � G Ku/

� �
a

K//

� �ÿ1

s
K/u

� �
s
: �45�

Considering the structural damping e�ects, Eq. (44) can be rewritten as
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Muu� �f�ug � Cs� �� � Cd� ��f _ug � Kuu� � uf g � Fmf g; �46�
where the damping matrix Cs� � is de®ned as

Cs� � � a Muu� � � b Kuu� �; �47�
where a and b are RayleighÕs coe�cients.

5. Results and discussion

To ensure the accuracy of the proposed ®nite element model, de¯ection and natural frequency results are
calculated for simply supported FGM plates with di�erent values of volume fraction power law exponent n
and compared with the results of Praveen and Reddy (1998) and Bishop (1979) as shown in Tables 1 and 2.

Table 1

Variation of non-dimensional center de¯ection, �w, with the power-law exponent n for simply supported FGM plates

Power-law exponent, n Present Praveen and Reddy (1998)

0 0.0847 0.0841

0.2 0.0957 0.0951

0.5 0.1082 0.1075

1.0 0.1211 0.1187

2.0 0.1320 0.1285

1 0.1820 0.1755

Table 2

Natural frequency x (Hz) for simply supported FGM plates for the two special cases of isotropy

Mode no. n � 0 n � 2000

Present Bishop (1979) Present Bishop (1979)

1 144.66 145.04 268.92 271.23

2 360.53 362.61 669.40 678.06

3 360.53 362.61 669.40 678.06

4 569.89 580.18 1052.49 1084.90

5 720.57 725.22 1338.52 1356.10

6 720.57 725.22 1338.52 1356.10

7 919.74 942.79 1695.23 1763.00

8 919.74 942.79 1695.23 1763.00

9 1225.72 1233.00 2280.95 2305.40

10 1225.72 1233.00 2280.98 2305.40

Fig. 2. Piezoelectric KYNAR cantilever beam.
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It is observed that the present results agree well with those in the literature. Subsequently, a cantilever beam
consisting of two layers of KYNAR piezoelectric ®lms, as shown in Fig. 2, is considered. The material
properties are listed in Table 3. The e�ects of applied voltage on the tip de¯ection are studied and compared
with the results obtained by Koconis et al. (1994) (Fig. 3). As can been seen, the results obtained by the
present model are in good agreement with the results presented in Koconis et al. (1994).

Having validated the model to a certain extent, static and dynamic studies on an FGM plate with in-
tegrated piezoelectric sensor and actuator layers are presented in the tabular and graphical forms. The
model under consideration is a cantilevered FGM plate consisting of combined Ti±6A1±4V and aluminum
oxide material constituents with di�erent mixing ratios. Fig. 4 show the variation of the volume fraction of
Ti±6A1±4V through the plate thickness. G-1195N piezoelectric ®lms bond both the top and bottom sur-
faces of the FGM plate as shown in Fig. 1. The plate is square with both length and width set at 0.4 m. It is

Table 3

Material properties of piezoelectric materials

KYNAR (Koconis, et al. 1994) G-1195N (Lam and Ng, 1999)

Elastic modulus E (N/m2) 6:85� 109 63� 109

PoisonÕs ratio m 0.29 0.3

Density q (kg/m3) ± 7600

Piezoelectric constant d31 (m/V) 23:0� 10ÿ12 254� 10ÿ12

Piezoelectric constant d32 (m/V) 4:6� 10ÿ12 254� 10ÿ12

Dielectric coe�cients k33 (F/m) ± 15� 10ÿ9

Fig. 3. Tip de¯ection of the piezoelectric KYNAR cantilever beam versus the input voltage.

Fig. 4. Variation of the volume fraction function VT � �z=h� 0:5�n with the non-dimensional thickness.
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of thickness 5 mm, and each G-1195N piezoelectric layer is of thickness 0.1 mm. The material properties for
G-1195N piezoelectric layer and the FGM plate are given in Tables 3 and 4, respectively. The properties of
the FGM plate are temperature dependent and are evaluated at a temperature of 300 K. For the following
static and dynamic analyses, 64 8� 8� � elements are used to model the plate. Unless otherwise speci®ed, all
subsequent analyses are based on the model as shown in Fig. 1.

5.1. Static analysis

For de¯ection or shape control, the top and bottom piezoelectric layers are used as actuators. The top
layer is polarized in the direction of the applied voltage and the bottom layer is polarized in the opposite
direction of the applied voltage. The cantilevered FGM plate is originally exposed to a uniformly dis-
tributed load of 100 N/m2 and thus has an initial de¯ection as shown in Fig. 5. The e�ect of constituent
volume fraction VT � z=h� 0:5� �n on the de¯ection is studied by varying the volume fraction of Ti±6A1±
4V. This is carried out by varying the value of the power law exponent n. For example, n � 0 implies the
FGM plate consists only of Ti±6A1±4V. As n increases, the volume fraction of Ti±6A1±4V is decreased, as
shown in Fig. 3. When n tends to1, the FGM plate almost totally consists of aluminum oxide. It is shown
that with the increase of n, the de¯ection of the FGM plate is decreased. To control the plate de¯ection,
equal-amplitude active voltages of opposite sign are applied across the top and the bottom piezoelectric
layers, through the thickness. Fig. 6 show the centerline de¯ection of a cantilevered FGM plate for various
values of the power law exponent n under actuator voltage V � 40 V. It is clear from Figs. 5 and 6, that just
by adjusting the actuator voltages, one can control shape as well as the position of the maximum de¯ection
point.

Table 4

Materials constants of the constituent materials of the FGM plate

Material

constants

Aluminum oxide Ti±6A1±4V

E (N/m2) m q (kg/m3) E (N/m2) m q (kg/m3)

P0 349:55� 109 0.2600 3750 122:56� 109 0.2884 4429

Pÿ1 0 0 0 0 0 0

P1 ÿ3:853� 10ÿ4 0 0 ÿ4:586� 10ÿ4 1:121� 10ÿ4 0

P2 4:027� 10ÿ7 0 0 0 0 0

P3 ÿ1:673� 10ÿ10 0 0 0 0 0

P 3:2024� 1011 0.2600 3750 1:0570� 1011 0.2981 4429

Fig. 5. Centerline de¯ection of the FGM plate (CFFF) under uniformly distributed load of 100 N/m2 and actuator voltage V � 0 V.
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5.2. Vibration analysis

The initial ten natural frequencies of the FGM plate as a function of the volume fraction power law
exponent n are depicted in Tables 5±7 for various boundary conditions. The dimensions of the FGM plate
are the same as that shown in Fig. 1. Three sets of boundary conditions were considered: a cantilevered
(CFFF) plate, a simply supported plate (SSSS) plate and a fully clamped (CCCC) plate. Tables 5±7 show

Table 5

Variation of the natural frequencies (Hz) with the power law exponent n for a cantilevered (CFFF) FGM plates with integrated sensor

and actuator layers

Mode no. n � 0 n � 0:2 n � 0:5 n � 1 n � 5 n � 15 n � 100 n � 1000

1 25.58 29.87 32.84 35.33 40.97 43.97 46.12 46.55

2 62.75 73.67 81.20 87.52 101.85 109.48 114.93 116.00

3 157.20 183.97 202.52 218.04 252.99 271.62 284.96 287.60

4 200.19 233.88 257.28 276.89 321.15 344.76 361.66 365.00

5 228.22 267.51 294.67 317.43 368.76 396.11 415.68 419.55

6 397.58 465.95 513.23 552.85 642.19 689.79 723.85 730.59

7 452.26 528.29 581.31 625.49 723.86 776.40 814.19 821.68

8 472.76 553.15 608.91 655.54 760.22 816.05 856.08 864.00

9 522.91 611.27 672.78 724.11 838.70 899.87 943.83 952.54

10 677.28 792.64 872.64 939.57 1089.95 1170.15 1227.64 1239.02

Table 6

Variation of the natural frequencies (Hz) with the power law exponent n for a simply supported (SSSS) FGM plates with integrated

sensor and actuator layers

Mode no. n � 0 n � 0:2 n � 0:5 n � 1 n � 5 n � 15 n � 100 n � 1000

1 144.25 168.74 185.45 198.92 230.46 247.30 259.35 261.73

2 359.00 420.66 462.47 495.62 573.82 615.58 645.55 651.49

3 359.00 420.66 462.47 495.62 573.82 615.58 645.55 651.49

4 564.10 665.01 731.12 778.94 902.04 967.78 1014.94 1024.28

5 717.80 841.26 925.45 993.11 1148.12 1231.00 1290.78 1302.64

6 717.80 841.26 925.45 993.11 1148.12 1231.00 1290.78 1302.64

7 908.25 1073.70 1180.93 1255.98 1453.32 1558.77 1634.65 1649.70

8 908.25 1073.70 1180.93 1255.98 1453.32 1558.77 1634.65 1649.70

9 1223.14 1432.16 1576.91 1697.15 1958.17 2097.91 2199.46 2219.67

10 1223.14 1432.16 1576.94 1697.15 1958.17 2097.93 2199.47 2219.68

Fig. 6. Centerline de¯ection of the FGM plate (CFFF) under uniformly distributed load 100 N/m2 and actuator voltage V � 40 V.
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that the natural frequencies increase with increases in the volume fraction power law exponent n for all the
three types of boundary conditions considered here.

For the vibration control, the top piezoelectric layer is used as an integrated actuator and the bottom
layer as an integrated sensor, as shown in Fig. 1. The constant velocity feedback control algorithm de-
scribed earlier is used to control or suppress the vibration of the FGM plate. To simplify the vibration
analysis, the modal superposition algorithm is used and ®rst six modes are considered in this modal space
analysis. An initial modal damping for each of the modes is assumed to be 0.8%. A unit of force is imposed
at point A of the FGM plate (Fig. 1) in the vertical direction and is subsequently removed to generate
motion from the initial displacement. The transient response of the FGM plate is analyzed by using the
Newmark-b direct integration technique and the parameters c and b are taken to be 0.5 and 0.25, re-
spectively. All the calculations for transient response are performed with a time step of 0.001 s.

Figs. 7±10 show the decay envelopes of the transient response of point A (Fig. 1) of the FGM plate at
various values of the power law exponent n for feedback gain, ranging from 0 to 10ÿ1. The e�ect of the
power-law exponent n on the transient response is similar to that of static analysis in that the vibration
amplitude decreases as the power-law exponent n increases. When gain G � 0, the transient response still
attenuates with time due to structural damping, (Fig. 7). With the introduction of feedback gain, the
attenuation of the amplitude of vibration increases considerably. With a gain of G � 0:1, the vibration
amplitude almost attenuates to almost zero as shown in Fig. 10. Fig. 11 presents the piezoelectric sensor
voltage response for a predominantly aluminum oxide plate (i.e. power law exponent n � 1) for various
gain values of G � 10ÿ3, 10ÿ2, 5� 10ÿ2 and 10ÿ1. For these various gain values, the results show that peak

Table 7

Variation of the natural frequencies (Hz) with the power law exponent n for a fully clamped (CCCC) FGM plates with integrated

sensor and actuator layers

Mode no. n � 0 n � 0:2 n � 0:5 n � 1 n � 5 n � 15 n � 100 n � 1000

1 262.53 306.42 337.45 363.00 420.26 450.85 472.79 477.14

2 533.83 623.47 687.16 739.30 855.25 917.21 961.79 970.64

3 533.83 623.47 687.16 739.30 855.25 917.21 961.79 970.64

4 774.20 904.40 999.44 1075.32 1243.98 1334.10 1398.98 1411.85

5 957.32 1119.16 1233.99 1327.94 1534.21 1644.53 1724.30 1740.15

6 963.04 1125.80 1241.01 1335.47 1542.96 1653.93 1734.16 1750.09

7 1172.70 1370.83 1516.60 1632.04 1886.53 2022.62 2120.87 2140.36

8 1172.70 1370.83 1516.60 1632.04 1886.53 2022.62 2120.87 2140.36

9 1535.81 1797.55 1981.96 2133.47 2460.92 2636.29 2763.82 2789.22

10 1535.81 1797.55 1981.96 2133.47 2460.92 2636.29 2763.82 2789.22

Fig. 7. A plot of decay envelopes showing the variation of the displacements at the tip of the cantilever plate (see point A, Fig. 1) for a

gain of 0.
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Fig. 8. A plot of decay envelopes showing the variation of the displacements at the tip of the cantilever plate (see point A, Fig. 1) for a

gain of 0.01.

Fig. 9. A plot of decay envelopes showing the variation of the displacements at the tip of the cantilever plate (see point A, Fig. 1) for a

gain of 0.05.

Fig. 10. A plot of decay envelopes showing the variation of the displacements at the tip of the cantilever plate (see point A, Fig. 1) for a

gain of 0.1.
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values do not vary and approach the static value due to the initial static de¯ection. It is also observed that
with the increase of the gain, the sensor voltage response attenuates substantially faster. In Fig. 12, the
corresponding piezoelectric actuator responses are presented. The actuator voltages increase as the gain
values increase with the largest actuator voltage of 1.5 volt occurring at the initial time when gain G � 0:1.
It should be noted that the gain could not be increased inde®nitely as piezoelectric materials have inherent
breakdown voltages.

Fig. 12. Plots of piezoelectric actuator response for a cantilever aluminum oxide plate (n � 1) for various gain values, G.

Fig. 11. Plots of piezoelectric sensor response for a cantilever aluminum oxide plate �n � 1� for various gain values, G.
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6. Conclusion

An e�cient ®nite element model is presented for carrying out the shape and vibration control of the
FGM plates using integrated piezoelectric sensor/actuator layers. The formulation is based on the CLPT,
but can be easily extended to higher order laminated plate theories. The properties of the FGM plate are
functionally graded in the thickness direction according to a volume fraction power law distribution. Static
and dynamic analyses were carried out on the FGM plates for various boundary conditions clearly showing
the e�ects of the constituent volume fraction on the FGM plate responses. For vibration control, a constant
velocity control algorithm is applied in a closed loop system to provide active feedback control of the FGM
plates. The dynamic response shows that the vibration amplitude of the FGM plate attenuates at very high
rates for appropriate gain values, thus demonstrating the e�ectiveness of the present control algorithm for
the vibration control of the FGM plates.
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